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The role of temperature in classical nucleation theory is examined. It is shown that while even small
clusters are assigned a temperature in the classical theory, this must be a fluctuating quantity.
Stochastic simulations of cluster evaporation and growth are presented to track the temperature
fluctuations in time. The relation̂udTu2&5kT0

2/Cn for the mean square temperature fluctuation is
confirmed, wherek is the Boltzmann constant,Cn is the cluster heat capacity, andT0 is the bath
temperature. For small capillary drops~50–100 molecules!, the resulting rms temperature
fluctuations of 10°–20° might be expected to have a significant effect on the nucleation rate.
However, the simulations reveal a cluster temperature distribution that is centered several degrees
below T0. A theory is presented to explain this effect. To first order, which includes Gaussian
fluctuations of the cluster temperatureT, we find that the effective temperature for cluster
evaporation isT2h/2Cn , whereh is the latent heat. This temperature correction is precisely that
required by detailed balance and results both in a centering of the cluster temperature distribution on
T0 and a cancellation of any significant effect of temperature fluctuations on the nucleation
rate. © 1995 American Institute of Physics.
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I. INTRODUCTION

The assignment of a temperature to small systems,
the size of molecular clusters, is perhaps nowhere more
plicit than in the capillarity approximation of classical nucle
ation theory.1 This approximation can take on a number o
corrected forms, but its essence is that a cluster embryo
modeled as a liquid drop~or solid particle! having the bulk
properties of the nucleated phase. Among these is a we
defined temperature, which is generally set equal to the te
perature of the surrounding vapor bath for computing clust
properties, but can be hotter than the bath at finite nucleat
rates due to the release of latent heat.2 The capillarity ap-
proximation also includes assignments for the density, he
capacity, surface tension, and evaporation rate, all in terms
the temperature of the drop. The notion of a cluster tempe
ture is therefore well rooted in the classical theory and a
pears to be required, at least until development of a ful
molecular treatment of nucleation based solely on clus
energy.

The role of temperature in classical nucleation theo
has been examined from several directions. Studies
nonisothermal nucleation have shown that high nucleati
rates require the dissipation of the latent heat of conden
tion, resulting in an elevation of the cluster temperatu
above the temperature of the bath, but the inclusion of th
effect does not significantly alter the nucleation rate.2–5 The
effect of temperature fluctuations on the nucleation rate h
also been examined.6,7 These latter studies attempted to in
clude the effect of fluctuations in cluster temperature abo
the temperature of the bath~T0!. The fluctuation distribution
was taken to be Gaussian and centered onT0. However,
since the evaporation rate increases exponentially with te
perature, it was observed that the evaporation rate, weigh
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by the cluster temperature distribution, exceeded the evap
ration rate of the cluster at the temperature of the bath. T
excess evaporation, over that required to satisfy detailed b
ance, resulted in the prediction of an unphysically large~26
orders of magnitude! reduction in the nucleation rate.6 That
conclusion has been tempered in more recent work.8 The
present paper builds on results from a preliminary study
temperature fluctuations in nucleation, in which the simula
tion model described in Sec. IV was presented.9

There are well-known difficulties in the assignment o
temperature to small systems coupled to a heat bath10 and
considerable controversy.11,12 Thus, when possible, the
method of choice is to work within the framework of fluc-
tuations in energy rather than temperature. However, with
the framework of the capillarity approximation, it does no
make a substantial difference which formulation is applie
because the bulk heat capacity provides a functional relati
between changes in temperature and changes in energy of
cluster embryo modeled as a liquid drop (dE5CndT). Con-
sequently, the difficulties associated with the introduction o
temperature fluctuations in the capillary drop model will no
be resolved simply by changing to an energy description. A
shown in Sec. III, a more substantial modification, in th
form of a correction to the evaporation rate of small cluster
is required.

In this paper we examine the role of temperature i
nucleation theory from the standpoint of fluctuations in bot
the cluster temperature and cluster energy. When it becom
necessary to adopt a statistical model~e.g., to evaluate the
density of states of a small cluster! the capillarity approxi-
mation will be used. It is shown that if temperature fluctua
tions are included, care must be taken in assigning the clus
temperature when the process under consideration~e.g.,
8983983/12/$6.00 © 1995 American Institute of Physicso¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8984 R. McGraw and R. A. LaViolette: Classical nucleation theory
evaporation, molecular collision! results in transfers of en-
ergy that are an appreciable fraction of the cluster ene
itself. A similar situation has long been encountered in s
tistical descriptions of atomic nuclei in which temperatu
was introduced.11,13,14Here the emission of even one partic
constitutes a relatively large loss of energy, which reduc
the temperature considerably. Careful analysis reveals
the temperature determining the energy distribution of em
ted particles is not the temperature of the nucleus bef
emission, but the temperature after emission has occurre14

In the following sections we adapt similar methods and o
tain a similar result. We will find that to first order in siz
correction the fluctuations are Gaussian and centered onT0.
However, the temperature appearing in the Clapeyron eq
tion for the cluster evaporation rate is shown to not be t
temperature of the cluster before evaporation of a molec
occurs, as is usually assumed, but an average of the clu
temperatures before and after evaporation has occurred.
distinction is important when the cluster size is small.

In Sec. II we present a description of detailed balance
it is used in classical nucleation theory, to derive the flux
for cluster evaporation and growth. When temperature fl
tuations are introduced, without correction for the effects
large fractional energy exchange, it is found that the detai
balance condition is violated; the average rate of evapora
exceeds the rate of molecular accommodation, resulting
violation of the second law. The resolution of the problem
presented in Sec. III through the derivation of the correc
cluster evaporation rate described earlier. In Sec. IV we
ply the capillarity approximation to simulations of drople
evaporation and growth. Initially we calculate the evapo
tion rate in the conventional manner without temperatu
correction. In the absence of a carrier gas it is found that
temperature distribution is shifted below the bath tempe
ture by the precise amount required for detailed balance
hold, nonetheless inconsistencies remain. Again the pr
lems are resolved when the corrected evaporation rate of
III is used. Then it is found that the simulated fluctuatio
spectrum is centered on the bath temperatureand the detailed
balance condition is satisfied.

Distributions for temperature and energy fluctuations
a capillary drop are derived in the Appendix using the Ei
stein fluctuation formula.15 A Carnot engine coupling be-
tween the drop and the bath is used to compute the revers
work required to shift the drop temperature from that of t
bath. For small values of the reciprocal particle size, t
fluctuations in both temperature and energy reduce to Ga
ian form and the fluctuations in temperature are centered
the temperature of the bath. One consequence of workin
the Gaussian limit of large particle size is that it becom
apparent that the fluctuation distributions are not required
be non-Gaussian for resolution of the difficulties associa
with the preservation of detailed balance. Section V prese
a discussion of these results.
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II. THE EFFECT OF FLUCTUATIONS ON CLUSTER
ENERGY AND MASS BALANCE

The evaporation rate enters into the net flux for the con
version of clusters of sizeg to size g11, whereg is the
number of molecules in the cluster. The net flux takes th
form

J~g,g11!5b1sgf g2gg11sg11f g11 , ~2.1!

whereb1 is the accommodation rate, per unit area of surfac
for molecules of the condensable vapor,gg11 is the evapo-
ration rate, andsg and f g are the surface area and numbe
concentration, respectively, for clusters of sizeg. For a vapor
accommodation coefficient of unity,

b15~2pm1kT!21/2p1 , ~2.2!

wherem1 andp1 are the molecular mass and partial pressu
of the vapor species at temperatureT. At equilibrium the net
flux vanishes to give the detailed balance condition as
appears in classical nucleation theory:

b1sgng5gg11sg11ng11 , ~2.3!

whereng is the cluster concentration at equilibrium.
The equilibrium cluster concentrations are obtained, i

the usual manner, from the reversible work required to brin
about their formation from the vapor.1 This results in a de-
termination of the evaporation rate as

gg115b1sgng /~sg11ng11!

5b1~sg /sg11!expH 2 ln S1F s

kT
~sg112sg!G J

5~sg /sg11!~2pm1kT!21/2p1~`,T!

3expF s

kT
~sg112sg!G

>~sg /sg11!~2pm1kT!21/2p1~`,T!expS 2s

r gkT
n1D ,

~2.4!

where, beginning with the second equality, the capillarit
approximation is used. The equilibrium vapor pressure ov
a flat surface isp1(`,T), S5p1/p1(`,T) is the supersatura-
tion ratio, ands is the surface tension. The last equality wa
obtained usingsg112sg>dsg/dg for a cluster modeled as a
spherical drop wherer g is theg-cluster radius andn1 is the
molecular volume of the nucleating species. The last tw
equalities in Eq.~2.4! show the required independence of the
evaporation rate on the concentration of vapor. The last tw
factors in Eq.~2.4! give the Kelvin relation for the vapor
pressure in equilibrium over a surface with radius of curva
ture r g . Equation~2.2! shows that the condensation rate is
proportional to the pressurep1 of the surrounding vapor.
Equation~2.4! shows that the evaporation rate is proportiona
to the vapor pressure of the drop. A more complete discu
sion of the thermodynamic assumptions behind the transiti
from Eqs.~2.1! to ~2.4! is found in Ref. 16.

From the Clapeyron relation
2, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8985R. McGraw and R. A. LaViolette: Classical nucleation theory
d ln p1~`,T!

dT
5

h

kT2
, ~2.5!

whereh is the bulk latent heat per molecule and we obta
from Eq. ~2.4!,

d ln gg11

dT
5

hd
kT2

2
1

2T
>

hd
kT2

, ~2.6!

wherehd includes the drop curvature correction

hd5h22sn1 /r g ~2.7!

and the last equality of Eq.~2.6! follows for kT!2hd .
@Equation ~2.7! will require correction for the temperature
derivative ofs if the latter is a strong function ofT.# The
curvature correction in Eq.~2.7! is less than 10% over the
size range of the 50–300 molecule water clusters studied
the simulations. Thus we will neglectchangesin curvature
correction with small changes ing to obtain

gg11~T!5gg11
cl expFhdk S 1T02 1

TD G , ~2.8a!

where

gg11
cl [gg11~T0! ~2.8b!

is the evaporation rate from Eq.~2.4!, evaluated at the tem-
perature of the bath. The superscript cl emphasizes t
gg11
cl is the evaporation rate, per unit area of surface, for

cluster of sizeg11 in the classical nucleation theory. Spe
cifically, gg11

cl is an approximation togg11 of Eq. ~2.3! that
results after the capillarity approximation has been applie
Temperature dependence has been omitted since it is un
stood thatgg11

cl is evaluated only at the temperature of th
bath. In the remainder of the paper it is shown that Eq.~2.8!
correctly gives the evaporation rate for an ensemble of clu
ters as a function of the temperature of the bath, but shou
not be applied to individual clusters coupled to the bat
Henceforth, we continue to useT0 for the temperature of the
bath and useT exclusively for the temperature of a cluste
coupled to the bath in the capillarity approximation. Th
former is a constant, since the bath is assumed large, wh
the latter is a fluctuating quantity.

Equation~2.8! is tested in the simulation model of Sec
IV where it is used to evaluate the evaporation rate for clu
ters subject to fluctuations in temperature aboutT0. How-
ever, even without simulation it is evident that there are di
ficulties inherent in applying Eq.~2.8! to individual clusters,
as opposed to an ensemble of clusters. The major proble
violation of the detailed balance condition, when fluctuation
in temperature and energy of the cluster are included, w
now be described.

Fluctuations in temperature and energy of a small cap
lary drop are described by the distribution functions deve
oped in the Appendix. The average evaporation rate, av
aged over the normalized temperature distributionP(T) of
Eqs.~A8! and ~A9!, is defined as

gg11~T!5E gg11~T!P~T!dT. ~2.9!
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In the Appendix it is shown that the average value of the
reciprocal temperature, averaged overP(T), equals the re-
ciprocal of the temperature of the bath@Eq. ~A10!#. This
result, together with the property that exp(2hd/kT) is a con-
cave function forkT,hd/2, which is well satisfied over the
temperature range of interest@see, also, the inequality fol-
lowing Eq. ~2.7!#, meets the requirements for Jensen’s
inequality17 to hold. In the present case Jensen’s inequalit
takes the form

gg11~T!>gg11
cl . ~2.10!

For the special case thatP(T) is approximated by a
Gaussian distribution@Eq. ~A13!#,

P~T!>S Cn

2pkT0
2D 1/2 expS 2Cn~T2T0!

2

2kT0
2 D[ f 0~T!,

~2.11!

whereCn is the heat capacity of the cluster andf 0(T) has
been defined for later use, an explicit version of Eq.~2.10!
can be derived. Using the linear approximation for the expo
nent of Eq.~2.8a!,

hd
k S 1T02 1

TD>
hd
kT0

2 ~T2T0!, ~2.12!

we obtain, upon evaluating the integral in Eq.~2.9!,

gg11~T!5gg11
cl expS hd

2

2CnkT0
2D , ~2.13!

which satisfies Eq.~2.10!.
Detailed balance is the statement that for a system

equilibrium the rate of each process, however detailed,
exactly balanced by the rate of the reverse process.18 In the
classical nucleation theory, the fluxes for evaporation an
growth at equilibrium are described by the detailed balanc
condition, Eq.~2.3!, with the rate of molecular accommoda-
tion by all g clusters, in a unit volume, equal to the evapo-
ration rate ofall g11 clusters, in the same unit volume,
evaluated at the bath temperatureT0. The inequality de-
scribed by Eq.~2.10! implies a violation of detailed balance
since the rate of evaporation, averaged over the cluster d
tribution, exceeds the rate of molecular accommodation.~See
Ref. 10 for a discussion of related violations of the secon
law.! Equation~2.10! shows that this violation occurs gener-
ally and is not a consequence of the Gaussian approximatio
Specifically, the rate of cluster evaporation exceeds the ra
of condensation by the exponential factor in Eq.~2.13!,
which is about 1.15 for a 100 molecule cluster, and larger fo
smaller clusters. The excess evaporation results in a reduc
net flux for conversion ofg clusters tog11 clusters via~Eq.
2.1!. This has a multiplicative effect on the nucleation rate
with a separate factor for each cluster in the sequence fro
dimer through critical cluster size. The use ofgg11(T) in
place ofgg11

cl in Eq. ~2.3! is the main reason for the predic-
tion of an unphysically large reduction in the nucleation
rate.6,7

In the following sections we present a theory and an
analysis of the problem using a simple stochastic mode
There it is shown that the source of the difficulty lies in
, No. 22, 8 June 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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application of the conventional expression for the evapor
tion rate used in classical nucleation theory. Simulation
the evaporation and growth dynamics ofindividual clusters
is shown to require a new prescription for handling energ
exchange processes. Nevertheless, the conventional tr
ment is shown to remain valid for describing a canonic
ensembleof clusters in equilibrium at the temperature of th
bath. In other words, the classical theory already averag
over the canonical distribution in the derivation of Eqs.~2.4!
and ~2.8!, which are based on Eq.~2.3!, so averaging again,
as in Eq.~2.9!, is superfluous and leads to erroneous resul
The development of a general evaporation rate formula, su
able for individual clusters, is presented in Sec. III, whic
establishes the theoretical foundation for interpretation of t
model simulation results presented in Sec. IV.

III. THE EVAPORATION RATE OF SMALL CLUSTERS

This section will begin with an overview of the physics
resulting in a simple estimate for the evaporation rate
individual clusters in the capillarity approximation. This is
followed by a more general derivation using detailed balan
to obtain a formally exact expression for the cluster evap
ration rate. The simple estimate, which is adequate for t
simulations of Sec. IV, is recovered as a special case of
general rate law when the capillarity approximation is use
Averaging the new evaporation rate law over a canonic
distribution of clusters generates the classical nucleation
sult.

A. An overview of the basic argument

The evaporation rate of a small cluster can be dete
mined from the theory of unimolecular reaction rates applie
to the reaction:

Ag11→Ag1A1 , ~3.1!

whereAg is ag-molecule cluster andA1 is a molecule of the
vapor phase. The overall decay rate will be proportional
the number of states available to the decay productAg di-
vided by the number of states available to the reactantAg11
in the energy rangedE.13 This ratio,

wg~E2hd!

wg11~E!
>
exp@~1/k!S~E2hd!#

exp@~1/k!S~E!#
, ~3.2!

whereE is the total energy of theg11 cluster prior to evapo-
ration, plays the key role in the present analysis of the evap
ration rate for small clusters. In writing Eq.~3.2!, the Boltz-
mann relation

S~E!5k ln w~E!, ~3.3!

whereS(E) is the entropy of clusters having energy betwee
E andE1dE, has been used to obtain the cluster density
statesw. The use of the same entropy function in the nu
merator and denominator of Eq.~3.2! ignores the distinction
between clusters of sizesg andg11. This is a good approxi-
mation provided thatg is not too small. A more complete
expression is given in the following section.

In the limit thathd is small compared to the total energy
E, the entropy differences in Eq.~3.2! may be approximated
using the entropy derivative
J. Chem. Phys., Vol. 102Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬
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exp@~1/k!S~E2hd!#

exp@~1/k!S~E!#
>expS 2hd

k

dS

dED5expS 2hd
kT D ,

~3.4!

whereT is the cluster temperature. The last term in Eq.~3.4!
gives theT-dependent factor in agreement with Eq.~2.8!.
Note, however, that the first equality in Eq.~3.4! is only
approximate. Specifically, it fails when the energy trans-
ferred is an appreciable fraction ofE. To address a more
general case we invoke the capillarity approximation, assign
a temperature to the drop through the mappingE↔T, and
write the entropy change using the result obtained in the
Appendix.@The last term in Eq.~A8! is 2T0DS, whereDS
is the entropy change for the transition fromT0 to T. Here
we require the entropy change for the transition fromT to
T2hd/Cn .# Thus, for the exponent in Eq.~3.4!, we obtain

1

k
@S~E2hd!2S~E!#

5
Cn

k
ln
„T2~hd /Cn!…

T

5
Cn

k
lnS 12

hd
CnT

D
52

hd
kT F11

1

2 S hd
CnT

D1
1

3 S hd
CnT

D 21••• G ~3.5!

showing the correction to the exponent of Eq.~3.4! as an
expansion in powers of the fractional energy change~or frac-
tional temperature change! accompanying the transfer of en-
ergyhd .

If we are interested only in the lowest-order correction in
Eq. ~3.5!, we can write an equation similar in structure to Eq.
~2.8!. First for the entropy change, we obtain

1

k
@S~E2hd!2S~E!#>

2hd
k~T2D!

~3.6a!

with

D5
hd
2Cn

. ~3.6b!

Equations~3.6! result from comparison of terms through
lowest-order correction in Eq.~3.5! with the series expansion
for right-hand side of Eq.~3.6a!. Comparison with the right-
hand side of Eq.~3.4! shows that the lowest-order correction
appears as a temperature shift, which is inversely propor
tional to the cluster size. Then instead of Eq.~2.8!, the
evaporation rate becomes

gg11* ~T!>gg11
cl expFhdk S 1T02 1

T2~hd /2Cn! D G , ~3.7!

where the asterisk denotes the modified evaporation rate. Th
approximate equality refers both to use of the capillarity ap-
proximation and unfaithful representation of the higher-order
terms present in the series expansion of Eq.~3.5!. A more
complete derivation of Eq.~3.7! is given in Sec. III B based
on its deduction from the general result obtained from de-
tailed balance considerations. Note that Eq.~3.7! can be in-
, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8987R. McGraw and R. A. LaViolette: Classical nucleation theory
terpreted as assigning an effective evaporation tempera
in Eq. ~2.8!, which is equal to the average of the clust
temperatures before and after evaporation of a monomer
occurred.

A comparison of the evaporation rates from Eqs.~2.8!
and ~3.7!, and from the full series expansion based on E
~3.5!, is shown for fixed temperature in Fig. 1 as a functio
of cluster size. It is seen that the ensemble averaging
classical nucleation theory gives large overestimates for
evaporation rates of individual small clusters. In the larg
cluster limit, fluctuations in the canonical ensemble beco
negligible and the two approaches converge to the same
sult. The figure also shows that Eq.~3.7! is an excellent
approximation to the result obtained using the full series e
pansion of Eq.~3.5! for clusters larger than about 20 mo
ecules. For smaller clusters, other approximations introdu
with capillarity drop model begin to fail, including severa
approximations used in the derivation of Eq.~2.4!.16

Detailed balance is satisfied when Eq.~3.7! is used in
Eq. ~2.9! and the integration performed as in Eq.~2.13!.
Thus, we obtain

gg11* ~T!5E gg11* ~T! f 0~T!dT5gg11
cl ~3.8!

FIG. 1. Evaporation rate as a function of cluster size in the capillar
approximation. Results are for water clusters in the size rangeg510–300
molecules atT5300 K. All curves are normalized to the classical ensemb
rate expression of Eq.~2.8!. Dashed horizontal line, Eq.~2.8!; solid curve,
modified rate for individual clusters from Eq.~3.7!. Circles, result from
evaluation of the logarithm in Eq.~3.5! ~so as to properly include the highe
order terms in the series expansion!. The dotted curve results from a simila
comparison that neglects the curvature correction to the heat of vaporiza
from Eq. ~2.7! in both the classical and modified rate expressions.
J. Chem. Phys., Vol. 102Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬
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for the Gaussian temperature distribution of Eq.~2.11!. Un-
like Eqs. ~2.4! and ~2.8!, Eq. ~3.7! was derived without av-
eraging over an ensemble of clusters. Therefore, it can b
applied to individual clusters following the assignment of a
temperature to the cluster using the capillarity approxima
tion. That temperature must be a fluctuating quantity on ac
count of the small cluster size and averaging over its distr
bution is no longer superfluous and, in many applications
may be required. For example, to make contact with classic
nucleation theory we must average the modified rate over th
canonical ensemble. Equation~3.8! shows that the averaged
rate satisfies detailed balance and agrees with the rate fro
classical nucleation theory. Equation~3.7! will be tested fur-
ther in the simulations of Sec. IV.

B. Detailed balance

The detailed balance condition, Eq.~2.3!, can also be
used to derive the differential evaporation rate, which w
define as the rate of evaporation when the cluster energy is
the rangeE to E1dE. Considering only that subset ofg11
clusters whose energy lies in this range, Eq.~2.3! becomes

b1sgng~E2hd!5gg11* ~E!sg11ng11~E!. ~3.9!

Solving for the differential evaporation rate we obtain

gg11* ~E!5b1

sgng
sg11ng11

S ng~E2hd!/ng
ng11~E!/ng11

D
5gg11

ng~E2hd!/ng
ng11~E!/ng11

, ~3.10!

wheregg11 is from Eq.~2.3!. Like gg11
cl , which resultsafter

invoking the capillarity approximation,gg11 is applied only
at the temperature of the bath. Noting that the denominator
Eq. ~3.10! gives the probability for ag11 cluster to have
energy in the rangeE to E1dE, it is easily shown that Eq.
~3.10! satisfies detailed balance after integration over th
cluster energy distribution. Thus,

gg11* ~E!5E gg11* ~E!P~E!dE

5gg11E S ng~E2hd!/ng
ng11~E!/ng11

D ng11~E!

ng11
dE

5gg11E S ng~E2hd!

ng
DdE5gg11 . ~3.11!

To evaluate the cluster distributions appearing in Eq
~3.10!, it is convenient to use the grand ensemble. Summin
over all states in the energy rangeE to E1dE, and using Eq.
~3.3! gives

ty

le

tion
ng~E2hd!

ng11~E!
5
exp@~1/k!Sg~E2hd!#exp@2~E2hd!/kT0#exp~gmn /kT0!

exp@~1/k!Sg11~E!#exp~2E/kT0!exp@~g11!mn /kT0#
. ~3.12a!

Furthermore,

ng11

ng
5
qg11 exp@~g11!mn /kT0#

qg exp@gmn /kT0#
5
qg11

qg
expS mn

kT0
D , ~3.12b!
, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8988 R. McGraw and R. A. LaViolette: Classical nucleation theory
wheremn is the molecular chemical potential of the vapo
and qg is the canonical partition function for a stationary
cluster of sizeg. Substitution of Eqs.~3.12! into Eq. ~3.10!
gives

gg11* ~E!5gg11

qg11 exp@~1/k!Sg~E2hd!#exp~hd /kT0!

qg exp@~1/k!Sg11~E!#
,

~3.13!

showing the required independence of the evaporation r
onmn . Equation~3.13! is a formally exact expression for the
evaporation rate of a cluster of energyE.

The capillarity approximation can be used to evalua
the right hand side of Eq.~3.13!. Thus, for example,16

2kT0 ln qg5gm l1ssg , ~3.14!

whereml is the chemical potential of the bulk liquid and the
remaining quantities are as previously defined. Equatio
~3.12b! and~3.14! give the ratio of equilibrium cluster popu-
lations, at the temperature of the bath, in agreement with E
~2.4!. For cluster sizes that are not too small, e.g.,g.20, it is
a good approximation to neglect the distinction betwee
clusters of sizesg andg11 in Eq. ~3.13! to obtain

gg11* ~E!>gg11 expH 1k @S~E2hd!2S~E!#J expS hd
kT0

D
5gg11 expH 2

1

kT0
@W~E2hd!2W~E!#J , ~3.15!

whereW is the Helmholtz free energy.
As in Eq. ~3.11!, it is readily found that the differential

evaporation rate defined by Eq.~3.15! satisfies detailed bal-
ance after averaging over the cluster energy distribution. T
distribution function for equilibrium fluctuations in the en-
ergy is given by Eq.~A11! thus

P~E!5K expS 2
W~E!

kT0
D , ~3.16!

whereK is the normalization constant for the energy distr
bution. Carrying out the integration, as in Eq.~3.11!, we
obtain

gg11* ~E!5gg11KE
hd

`

expH 2
1

kT0
@W~E2hd!

2W~E!#J expS 2
W~E!

kT0
DdE

5gg11KE
hd

`

expS 2
W~E2hd!

kT0
DdE

5gg11KE
0

`

expS 2
W~E!

kT0
DdE

5gg11 . ~3.17!

The lower limit in the first two integrals is set by the require
ment of positive energy and the last integral uses the varia
substitutionE5E2hd .

Equation~3.7! is recovered as a special case of the ge
eral rate law when the capillarity approximation is used. R
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turning to Eq.~3.15!, we note that the entropy factor is iden-
tical to the right-hand side of Eq.~3.2!. Using either Eqs.
~3.5! or ~3.6! for the entropy differences and making the
replacements,gg11

cl for gg11 andT for E, gives the modified
evaporation rate in terms of the cluster temperatureT. Spe-
cifically, the use of Eq.~3.6! for the entropy difference gives
immediate recovery of Eq.~3.7!. The latter, in turn, ap-
proaches the classical ensemble rate of Eq.~2.8! when the
fractional energy exchange is small~Fig. 1!.

IV. A STOCHASTIC MODEL FOR FLUCTUATIONS
DURING EVAPORATION AND GROWTH

In this section we develop a direct approach to temper
ture fluctuations via the simulation of a specific coupling
channel between the cluster and the bath. The bath cons
of a large nondepletable reservoir of vapor at fixed temper
ture and pressure. The coupling to the bath is through t
evaporation and condensation of vapor molecules. The e
sential features of the capillarity approximation used in th
simulation are the following.~1! Its mapping of physical
clusters into spherical drops having bulk thermodynam
properties including well-defined values for surface tensio
temperature, heat capacity, etc.~2! Fluctuations in drop size,
energy, and temperature are included through direct simu
tions that incorporate the fundamental statistical character
evaporation and growth processes while neglecting the d
tails of molecular interaction.

A. Description of the model for a single coupling
channel

To focus the present analysis, we limit the model to
single coupling channel, or mode of energy exchange, b
tween the cluster and the bath. Thus we neglect in the sim
lations, but not in the qualitative discussion, the effects o
collisional and radiative energy transfer. Radiative transf
has a negligible effect under conditions similar to those o
the present calculations~2!, but the stochastic model can be
used to include radiative transfer for other applications~Sec.
V!. Energy transfer through collisions with background ga
and/or noncondensing vapor species has important implic
tions for the model and will be discussed. For example,
will be shown that the modified evaporation rate for sma
clusters results in a distribution of fluctuations in temperatu
or energy that is invariant to the fraction of energy dissipate
through nonaccommodating collisions, while for the unmod
fied evaporation rate@Eq. ~2.8!# this is not the case.

The major advantage of working with the single channe
model is that a single component cluster is constrained to
in stable equilibrium with its environment and good statistic
can be obtained without drift in cluster energy or size. Eac
condensation step increases the energy of the cluster by
amount equal to the latent heat. This, in turn increases t
evaporation rate and, therefore, the rate of energy remov
Similarly, each evaporation step decreases both the clus
energy and evaporation rate, and, therefore, enhances
relative probability that the next event will be a condensatio
step. Consequently, in this model the cluster is stable, flu
tuations regress, andT is a function of the cluster size:
, No. 22, 8 June 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8989R. McGraw and R. A. LaViolette: Classical nucleation theory
T5T01
hd
Cn

~g2g0!. ~4.1!

Hereg0 is the initial cluster size at the temperatureT0 of the
bath.

Rules for updating the simulation model are as follow
Both growth and evaporation are modeled as Poisson dist
uted processes by maintaining the computational time s
~t! sufficiently small that the occurrence of either multip
growth or multiple evaporation events, within any sing
time step, is a rare event. The growth sequence is simula
using Poisson arrival times for monomer at a fixed mean r
~per unit area of cluster surface! determined by the molecula
accommodation frequency through Eq.~2.2!. A vapor ac-
commodation coefficient of unity is assumed. The evapo
tion sequence is also simulated using Poisson statistics,
here the unit area departure rate varies depending on
temperature of the drop. We will investigate both Eqs.~2.8!
and~3.7! for determining the temperature dependence of
evaporation rate. Finally, the energy and temperature of
drop are updated after each growth or evaporation ev
Each condensing molecule addshd to the energy of the clus-
ter and hd/Cn to its temperature, while each evaporatin
molecule removes these amounts. Diffusion of heat with
the cluster is assumed to be sufficiently rapid, relative to
time interval between successive growth/evaporation eve
that the temperature within the cluster is uniform. This co
pletes the rules for implementing the single-channel stoch
tic model.

B. Simulation results

Calculations are presented here for water clusters in
50–300 molecule size range. These clusters are sufficie
large that fractional changes in size can be neglected,
small enough to be in a range where the studied effects
be easily seen. For a cluster size of 11 molecules atT05300
K, DT/T>0.1, whereDT is the standard deviation of the
temperature fluctuation@Eq. ~A14!#. For a cluster size of thir-
teen molecules we findDS/S>0.1 for fluctuations in en-
tropy, taking the bulk liquid entropy value at this temperatu
from Ref. 19 for the capillary drop. Thus the relative tem
perature and entropy fluctuations of the simulated clust
are less than those encountered in statistical models of
nucleus where the temperature concept has been employ11

Poisson statistics is achieved by settingt equal to 1/40
of the average time between collisions of the vapor with t
cluster surface. Simulation results were found to be indep
dent of this setting for values oft below about 1/10 of the
average collision time. Separate random number sequen
generated using the programRAN2,20 are used to decide
whether an evaporation or growth event takes place wit
each successive time step of the simulation. Bulk liquid w
ter properties required in the capillarity approximation a
from Ref. 19. Equilibrium is achieved by setting the vap
pressure used to compute the molecular accommodation
via Eq. ~2.2!, equal to the vapor pressure of the drop. T
latter follows the Kelvin relation
J. Chem. Phys., Vol. 102Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬t
:
ib-
ep

ed
te

a-
but
the

e
he
nt.

in
e
ts,
-
s-

he
tly
ut
an

e
-
rs
he
d.

e
n-

es,

in
-
e
r
te,
e

p15p1~r g ,T0!5p1~`,T0!expS 2s

r gkT0
n1D ~4.2!

evaluated atg5g0. Equations~2.4! and~2.8b! determine the
classical evaporation rategg11

cl , which is the prefactor in
Eqs.~2.8! and ~3.7!.

Figures 2 and 3 show statistically independent time s
quences for temperature and number of molecules, resp
tively, in a drop undergoing evaporation and growth. Initia
conditions are a cluster size of 100 molecules in equilibriu
at the bath temperature, 300 K. The regression of fluctuatio
that results from cluster stability is clearly evident in th
figures, as are the quantized jumps in number and tempe
ture, corresponding to integer values ofg in Eq. ~4.1!. Accu-
rate estimates of the fluctuation variance, and quantitat
tests of the different expressions for the evaporation ra
Eqs.~2.8a! and ~3.7!, require a level of statistical resolution
that can only be achieved when much longer time sequen
are examined. These results are reported in Figs. 4–6.

FIG. 2. Fluctuations in cluster size versus time. Results obtained from
stochastic condensation/evaporation simulation model for an initial clus
of 100 molecules in equilibrium at a bath temperature of 300 K.

FIG. 3. Fluctuations in cluster temperature versus time. Conditions are
same as in Fig. 2. The fluctuations are uncorrelated with those shown in F
2 due to the use of a different random number generator seed.
, No. 22, 8 June 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



t

t

z
h

o

-
f
e
q.

-
o

-

t
d
f

s.

-

e
e
ll

r

e
i
s

5
a
h

.

8990 R. McGraw and R. A. LaViolette: Classical nucleation theory
Figure 4 shows the mean-square temperature fluctua
as a function of the average cluster size.~For any given
simulation run, there is essentially no difference between
average and initial cluster size on the scale of the figure,
we approximate the average cluster size by the initial si
g0.! The observed fluctuation variance is seen to follow t
standard theoretical relation~Appendix!:

^udTu2&5kT0
2/Cn . ~4.3!

Each circle represents the statistics garnered from a time
quence of approximately 5000 random evaporatio
condensation events observed over a period of 200 000 c
putational time steps.~This is on the order of 10ms in real
time for the 50 molecule cluster, which is well beyond th
range of full molecular dynamics simulation.! The fluctua-
tion variance is not particularly sensitive as to whether E

FIG. 4. Temperature fluctuations versus cluster size. The smooth curv
k/Cn , the circles are the simulation results. Each circle represents a t
sequence of approximately 5000 random evaporation/condensation step
served over a period of 200 000 computational steps.

FIG. 5. Temperature fluctuation distributions for an initial cluster size of
molecules. Crosses result when the classical expression for the evapor
rate @Eq. ~2.8!# is applied to the simulated cluster. Circles result using t
corrected evaporation rate law@Eq. ~3.7!#. The solid line is the theoretical
result derived in the Appendix@Eqs.~A8! and ~A9!#.
J. Chem. Phys., Vol. 102Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬
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~2.8! or ~3.7! is used. Figure 4 was obtained using the modi-
fied evaporation rate, Eq.~3.7!, which gives excellent agree-
ment with the theoretical curve.@A slight, systematically
positive, deviation from the theoretical curve was observed
when Eq.~2.8! was used.#

More interesting are the temperature distributions them
selves. These are shown in Fig. 5 for an initial cluster size o
50 molecules and bath temperature equal to 300 K. Th
crosses, joined by the dashed line segments, result using E
~2.8! for the evaporation rate. Here we show the normalized
distribution resulting after 200 000 computational time steps
~again approximately 5000 random evaporation/conden
sation events!. Note that the average temperature appears t
be shifted by the amountD from Eq. ~3.6b!, equal to about
1/2 the point spacing seen in the figure,below the tempera-
ture of the bath. The circles result from a similar calculation
using the modified evaporation rate@Eq. ~3.7!#. The solid line
segments connect points obtained from the theoretical fluc
tuation distribution@Eqs. ~A8! and ~A9!# evaluated at tem-
peratures corresponding to integer values ofg in Eq. ~4.1!.
Figure 6 shows similar results for a 100 molecule cluster, bu
with less prominent differences between the corrected an
uncorrected distributions, as expected from a doubling o
Cn .

Several comments can be made about these distribution
First, all of the simulated distributions satisfy detailed bal-
ance for the corresponding evaporation rate. The distribu
tions resulting from Eq.~2.8! satisfy detailed balance at the
expense of an unphysical shift to temperatures below th
temperature of the bath. The distributions of Figs. 5 and 6 ar
non-Gaussian. However, the cluster sizes are not so sma
that they are far from the Gaussian limit and it is instructive
to examine this case. Then the theoretical distribution fo
fluctuations in temperature followsf 0(T), defined in Eq.
~2.11!, and it is readily shown that the following integral
identities hold: First, using the modified evaporation rate,

gg11* ~T!5E gg11* ~T! f 0~T!dT5gg11
cl , ~4.4!

is
me
ob-

0
tion
e

FIG. 6. Same as in Fig. 5 except for an initial cluster size of 100 molecules
, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8991R. McGraw and R. A. LaViolette: Classical nucleation theory
whereg* is from Eq. 3.7@this is Eq. ~3.8!#. Shifting the
variable of integration we obtain

gg11* ~T!5E gg11* ~T1D! f 0~T1D!dT

5E gg11~T! f 0~T1D!dT5gg11
cl , ~4.5!

where in the last equalityg is from Eq. ~2.8!, but the tem-
perature distribution has been shifted to lower temperatu
by the amount

D5
hd
2Cn

from Eq. ~3.6b!. Equations~4.4! and ~4.5! give an excellent
description of the effects seen in Figs. 5 and 6. In particu
the last equality of Eq.~4.5! supports the shifted temperatur
distributions shown by the dashed curves in Figs. 5 and

C. A qualitative description of the effects of a
background gas

When the conventional evaporation rate expression,
~2.8!, is applied to individual clusters, as in the dash
curves of Figs. 5 and 6, the time-average cluster tempera
is shifted below the temperature of the bath. In this ca
energy transfer by collisions with a noncondensable ba
ground gas will tend to restore the cluster temperature to t
of the bath, favoring increased evaporation and, therefor
reduction in the nucleation rate. In the high pressure limit
would expect the distribution to center on the bath tempe
ture and Eq.~2.13! would imply extreme reductions in the
nucleation rate, following the discussion presented in Sec
Such effects are not supported by recent experiments, wh
indicate little or no influence of background gas pressure
nucleation rate.21–23 Even more seriously, one can deduc
from the situation just described, the existence of a cyc
process at equilibrium with a step that includes unidire
tional net energy transfer from the background gas to
cluster—in violation of detailed balance.24

From the preceding analysis we conclude that while E
~2.8! can be made to satisfy detailed balance in the abse
of collisional energy transfer, it cannot be a valid express
for describing energy transfer processes involving sin
small clusters, or groups of small clusters where averag
over the canonical distribution is incomplete. For this pu
pose Eqs.~3.7! or ~3.13! should be used. Then the distribu
tion of cluster energy at equilibrium~over time! will cor-
rectly satisfy the canonical Boltzmann distribution law, an
be invariant to the specific nature of the coupling channe~s!
between the cluster and the bath. Thus, for systems in st
equilibrium, inclusion of a background gas will have no si
nificant effect on cluster fluctuations or on maintenance
the detailed balance condition.~At extreme gas pressure
there will be a vapor pressure increase but this effect is g
erally not included in the classical theory.! Thus Eqs.~3.7! or
~3.13! can be used, whether or not additional coupling cha
nels are included in the model. Similarly,hd has until now
referred specifically to the energy exchange accompany
an evaporation or condensation event. The analysis of S
J. Chem. Phys., Vol. 102Downloaded¬14¬Mar¬2005¬to¬130.199.3.2.¬Redistribution¬subject¬
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III is not limited to this case and should be applied even
whenhd represents a quantity of energy transferred by othe
mechanisms, including collisional energy transfer, tha
couple the system to the bath. Ifg doesn’t change during the
transfer, Eq.~3.15! can be used.

V. SUMMARY AND DISCUSSION

In this paper we have shown that although fluctuations in
cluster energy and temperature are not included explicitly in
the classical nucleation theory, which considers all clusters i
equilibrium at the bath temperature, they are properly ac
counted for through the equilibrium assumption implicit in
the detailed balance condition, Eq.~2.3!. Consequently, the
classical expression for the evaporation rate that appears
Eqs.~2.3!, ~2.4!, and~2.8! must be interpreted as applying to
an ensemble of clusters in equilibrium at the temperature o
the bath. Difficulties, in the form of detailed balance viola-
tion, arise when the attempt is made to apply this form to
individual clusters. Nevertheless, the need to determine th
evaporation rates for individual clusters~or groups of clus-
ters having the same energy! is evident. Examples include
studies of individual clusters, as presented in Sec. IV, an
nonisothermal nucleation processes where there is a need
track fluxes in both cluster energy and cluster size. In thes
cases it is meaningless to first average over energy, so the u
of Eq. ~2.8!, e.g., which implies such an average, is not ap-
propriate and can lead to erroneous results.

Simulation of the evaporation and growth dynamics of
individual clusters has been shown to require a new prescrip
tion for handling energy exchange processes that results in
different evaporation rate law from that encountered in clas
sical nucleation theory. Only in the limit that the energy of
exchange is a small faction of the total available cluster en
ergy are the two forms equivalent. A major result of the
present study has been the development of a formally exa
expression for the single-cluster evaporation rate@Eq.
~3.13!#. The approximate evaluation of this expression in
Sec. III is a new application of the capillarity approximation,
namely, its use to determine the evaporation rate of sma
clusters without ensemble averaging. The new rate law re
duces to Eq.~3.7! for ready evaluation and testing in the
simulation model. The single-cluster rate expressions enab
one to recover the classical nucleation result for a canonica
ensemble of clusters by averaging over the distribution—th
detailed balance condition is always satisfied. Thus we ma
replace the classical evaporation term in Eq.~2.3! ~gg11!

with the explicit averaged value (gg11* ) since these are equal
for the modified cluster evaporation rate as shown by Eqs
~3.11! and ~3.17!, or by Eq.~3.8! in the capillarity approxi-
mation.

The second result of this paper has been the develop
ment of a stochastic simulation model for describing cluste
evaporation and growth statistics in the capillary approxima
tion. Despite its current application to a single coupling
channel, the model is successful in resolving differences be
tween the evaporation rates given by Eqs.~2.8! and~3.7! and
in reproducing the fluctuation spectrum, as derived from the
, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8992 R. McGraw and R. A. LaViolette: Classical nucleation theory
Einstein fluctuation formula in the Appendix, when the
modified rate from Eq.~3.7! is used.

With further development, the stochastic model wi
likely prove advantageous for extension to multicompone
systems with multiple coupling channels. For multicompo
nent systems, it is well known that stable equilibria betwee
a drop and its vapor can occur. Indeed, this stability plays
major role in determining the optical properties of atmo
spheric aerosols and activation processes in clouds. Consi
for example, a two-component drop consisting of a nonvol
tile solute in water. This drop coexists in equilibrium with
water vapor along the stable branch of the Kohler curve th
describes the size of the drop as a function of relativ
humidity.25 Another example, although not a case of tru
stability, is provided by sulfuric acid-water clusters in binar
nucleation.26,27 Here the exchange of water vapor is fas
compared with exchange of sulfuric acid, which is general
present in only trace amounts. As a result, clusters are
local equilibrium with respect to evaporation and condens
tion of water vapor. Recent work suggests that fluctuatio
become large at boundaries between stable and unsta
branches of the Kohler curve.27 The stochastic model should
provide an ideal tool for simulating such fluctuations. Wit
further extension, which will likely include some coarse
graining of the fluctuations, the model should prove usef
for statistical simulations of heterogeneous nucleation pr
cesses in clouds. These systems will be the subject of fut
studies.

A final interesting consequence of the simulation mod
is seen in Fig. 4. Here the model successfully predicts t
variance of the temperature fluctuation given only the a
sumption of Poisson statistics and the Clapeyron temperat
dependence of the evaporation rate. This result implies
fundamental connection between Eq.~4.3! for the fluctua-
tions, Poisson statistics for the arrival and departure of mo
ecules, and the Clapeyron temperature dependence of E
~2.8! and~3.7!. As a further test of the model, similar calcu
lations were carried out for radiative transfer with absorptio
and emission of photons serving as the coupling chann
between the particle and the bath. Equation~4.3! for the fluc-
tuations was again found to be satisfied. However, the ra
of photon emission from the particle were found to be co
sistent with the Wien distribution law—the high frequenc
form of the Planck distribution.@The Wien law gives a
temperature-dependent photon emission rate similar to E
~2.6!, except that the photon energyhn appears in place of
hd on the right-hand side.# This result was determined to be
a consequence of the assumption of Poisson statistics, wh
for photons is valid only in the shot limithn@kT.

During this work it was brought to our attention tha
several authors have suggested a modification to the class
nucleation kinetics@Eq. ~2.1!# by noting that when molecules
condense on a curved surface, the area available for cond
sation is not the area of the surface itself, but the larg
exterior area of an added outer shell of thickness equal to
molecular radius.28,29This correction will not effect the ratio
of the modified to classical expressions for the evaporati
rate ~Fig. 1!, which results from the theory presented her
but it may have an effect on the classical rate itself. How
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ever, since the correction is purely kinetic, the equilibrium
cluster populations will be unchanged and any effect on th
unit-area evaporation rate of Eq.~2.4! must be small. How
small it is will depend on how one applies the correction to
the surface area available for evaporation. If the added-sh
structure, shown in Fig. 1 of Ref. 29, is interpreted as
transition state for the reaction described by Eq.~3.1!, then it
seems natural to replace the ratiosg/sg11 by unity in the first
equality of Eq.~2.4! to correct the evaporation rate. For a
50-molecule cluster, this is on the order of a 1% change. Th
stochastic model simulations will be affected by the in-
creased condensation/evaporation rates that result from au
menting the surface area factors in Eq.~2.1!. Mainly there
will be a slight compression of the fluctuation time scale o
Figs. 2 and 3~by about 20%! due to the faster rates for
evaporation and growth. The fluctuation distribution result
shown in Figs. 4–6 will be unchanged.
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APPENDIX: THE DISTRIBUTION OF TEMPERATURE
AND ENERGY FLUCTUATIONS FOR SMALL
SYSTEMS COUPLED TO A HEAT BATH

In this Appendix we first calculate the reversible work
required to change the temperature of a small system fro
that of the bath to which it is coupled. The Einstein relation
~15!, connecting the probability of a fluctuation in a variable
x with the reversible work required to produce that fluctua
tion through the application of external constraints, is the
used to obtain the probability distribution function for fluc-
tuations, wherex is either the temperature or energy of the
system. We will focus on the temperature fluctuation distri
bution to obtain the theoretical curves shown in Figs. 5 an
6. The energy fluctuation can be obtained from the temper
ture fluctuations usingdE5CndT.

To derive the reversible work we imagine a Carnot en
gine providing the coupling between the system and the ba
as depicted in Fig. 7. This is used to bring the system to
temperatureT, which can be either less than or greater tha
the bath temperatureT0. For the case thatT is less thanT0
~case 1 of Fig. 7! the condition of reversibility requires

DS52
Q1

T
1
Q2

T0
50. ~A1!

Combining this result with the first law

Q11W5Q2 , ~A2!
, No. 22, 8 June 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8993R. McGraw and R. A. LaViolette: Classical nucleation theory
gives the usual result for the Carnot efficiency

h2[
W

Q1
5
T02T

T
, ~A3!

where the superscript~2! signifies the cooling case~T,T0,
dT,0!. Applying this last result to differential changes in th
heat and work gives

dQ15
T

T02T
dW52CndT. ~A4!

A similar analysis for heating~T.T0 and dT.0! corre-
sponding to case 2 of Fig. 7 yields

h1[
W

2Q1
5
T2T0
T

~A5!

and

2dQ15
T

T2T0
dW5CndT ~A6!

in place of Eqs.~A3! and ~A4!, respectively. Thus, in either
case, heating@Eq. ~A6!# or cooling @Eq. ~A4!#, we have

dW52CnS T02T

T DdT. ~A7!

The reversible work is obtained by integrating Eq.~A7! from
T0 to T to obtain

W~T!5E
T0

T

2Cn~T02T!/T dT

5Cn~T2T0!1CnT0 ln~T0 /T!, ~A8!

which is equal to the Helmholtz free-energy change.
The Einstein relation~15! gives the temperature fluctua

tion distribution as

P~T!5K1 exp@2W~T!/kT0#, ~A9!

whereK1 is a normalization constant. Equation~A9!, with
W(T) from Eq. ~A8!, was used to obtain the theoretical di
tribution curves shown in Figs. 5 and 6. The distribution h
the property that the average value of the reciprocal tempe
ture equals the reciprocal of the bath temperature. Thus,

FIG. 7. Carnot engine coupling of a small system to a heat bath.
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-
s
ra-

K 1TL 5K1E
0

` 1

T
exp@2W~T!/kT0#dT

5K1E
0

`S 2
1

CnT0

dW

dT
1
1

TDexp@2W~T!/kT0#dT

5
2K1

CnT0
E
0

` dW

dT
exp~2W/kT0!dT1

K1

T0

3E
0

`

exp~2W/kT0!dT

5
2K1

CnT0
E
W~0!

W~`!

exp~2W/kT0!dW1
1

T0

5
1

T0
, ~A10!

which is a special case of a more general identity establish
in Ref. 10.

The distribution of energy fluctuations in the canonica
ensemble follows the Boltzmann form10

P~E!5K2 expSS~E!

k DexpS 2
E

kT0
D

5K2 expS 2
W~E!

kT0
D , ~A11!

whereK2 is the normalization constant, the density of state
has been written in terms of the entropy, as in Eqs.~3.2! and
~3.3!, and the definition of the Helmholtz free energy
(W5E2T0S) has been used. Note that Eq.~A11! is a gen-
eral expression that does not require the capillarity approx
mation.

For large clusters,Cn is large and the distribution of
fluctuations is sharply peaked about the bath temperatureT0.
It is useful to consider the first-order approximation toP(T)
valid when the fluctuations about the bath temperature a
small compared to the bath temperature itself. Then expa
sion of the logarithm in Eq.~A8! and noting the cancellation
of the linear terms gives

W~T!>
1

2

Cn

T0
~T2T0!

2, ~A12!

where the approximate equality signifies the neglect o
higher terms from the expansion. Substitution into Eq.~A9!
yields a Gaussian approximation for the distributionP(T):

P~T!>S Cn

2pkT0
2D 1/2 expF2Cn~T2T0!

2

2kT0
2 G ~A13!

which is valid for uT2T0u/T0!1. Equation~A13! results in
the standard expressions for the mean-square fluctuatio
~variance! in temperature and energy:

^udTu2&5kT0
2/Cn ,

~A14!
^udEu2&5kT0

2Cn .

For larger ~non-Gaussian! fluctuations Eqs.~A8! and ~A9!
should be used.
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